Bellwork 01/30/2012

Tell how you know that the quadrilateral is a parallelogram.

1_

diagnals bised eachother

2.

Theorem 8.8

Geometry

8.4 Properties of Rhombuses, Rectangles, and Squares Standard(s): 3, 9

Vocabulary:

Rhombus: A parallelogram with 4 congruent sides.

Rectangle: A parallelogram with 4 right angles.

Square: A parallelogram with 4 congruent sides and 4 right angles.

COROLLARIES

For Your Notebook

RHOMBUS COROLLARY

A quadrilateral is a rhombus if and only if it has four congruent sides.

ABCD is a rhombus if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$.

Proof: Ex. 57, p. 539

RECTANGLE COROLLARY

A quadrilateral is a rectangle if and only if it has four right angles.

ABCD is a rectangle if and only if $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.

Proof: Ex. 58, p. 539

SQUARE COROLLARY

A quadrilateral is a square if and only if it is a rhombus and a rectangle.

ABCD is a square if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$ and $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.

THEOREMS

For Your Notebook

THEOREM 8.11

A parallelogram is a rhombus if and only if its diagonals are perpendicular.

 $\Box ABCD$ is a rhombus if and only if $\overline{AC} \perp \overline{BD}$.

Proof: p. 536; Ex. 56, p. 539

THEOREM 8.12

A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.

 $\Box ABCD$ is a rhombus if and only if \overline{AC} bisects $\angle BCD$ and $\angle BAD$ and \overline{BD} bisects $\angle ABC$ and $\angle ADC$.

Proof: Exs. 60-61, p. 539

THEOREM 8.13

A parallelogram is a rectangle if and only if its diagonals are congruent.

 $\square ABCD$ is a rectangle if and only if $\overline{AC} \cong \overline{BD}$.

Proof: Exs. 63-64, p. 540

Classify a Quadrilateral

Classify the quadrilateral. Explain your reasoning.

Rhombus It's a ∠7 by thm8.8 then all sides are =

Square Thm 8.11 Thm 8.13 Square corollary

Possible Qualities of Special Quad.

For any rectangle ABCD, decide whether the statement is always or sometimes true. Draw a diagram and explain your reasoning.

Use Special Quad. to find Variables

Classify the special quadrilateral. *Explain* your reasoning. Then find the values of *x* and *y*.

Rhombus
$$5x+6=8x$$

$$3x=6$$

$$1x=2$$

$$12y-1+97=180$$
 $12y+96=180$
 $12y=84$
 $12y=7$

Square

$$2x+1=4x-7$$

 $8=2x$
 $x=47$
 $7y+3=45$
 $7x-42$

$$7y = 42$$

$$\boxed{y = 6}$$

Use Properties of Special Quad.

The diagonal of rhombus WXYZ intersect at point V. Given that m_{\angle} XZY=34° and WV=7, find the indicated measure.

$$m_{\angle}WZV = 34^{\circ}$$

$$xy = \sin 3U = \frac{7}{XY}$$

$$XY = \frac{7}{\sin 3U}$$

$$XY = \frac{7}{\sin 3U}$$

$$XY = \frac{7}{3}$$

$$XY = \frac{7}{3}$$

$$XY = \frac{7}{3}$$

Homework Assignment Worksheet 8.4B

Proving a Parallelogram

Describe how to prove that DEFG is a parallelogram.

