Bellwork
 01/05/2012

1. Solve $x^{2}+9=25$

$$
\begin{array}{r}
\sqrt{x^{2}}=\sqrt{16} \\
x= \pm 4
\end{array}
$$

2. Simplify $\sqrt{ } 20$ in simplest radical form.

$$
\begin{aligned}
& \sqrt{20} \\
& \sqrt{4} \cdot \sqrt{5} \\
& 2 \sqrt{5}
\end{aligned}
$$

Geometry

7.1 Apply the Pythagorean Theorem Standard(s): 2, 4

Vocabulary:

1. Pythagorean Triple: A set of three positive integers a, b, and c that satisfy the equation $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.

Remember: c is the hypotenuse and will always be the largest of the 3 \#'s.

THEOREM

For Your Notebook
THEOREM 7.1 Pythagorean Theorem
In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.
Proof: p. 434; Ex. 32, p. 455

$c^{2}=a^{2}+b^{2}$

Find an Unknown Side Length
Find the unknown side length. Simplify any radicals. Tell whether the numbers are a pythagorean triple.

Use Pythagorean Triples
The given lengths are two sides of a right Δ. All three side lengths are integer and together form a Pythagorean triple. Find the length of the third side and tell whether it is a leg or hypotenuse.

$$
\begin{array}{cc}
28 \text { and } 45 \\
c^{2}=28^{2}+45^{2} & 45^{2}=a^{2}+28^{2} \\
c^{2}=784+2025 & \vdots \\
c^{2}=2089 & \vdots \\
c=53 & \text { hypotenuse }
\end{array} a=35.22 \ldots
$$

56 and 65

$$
\begin{gathered}
c^{2}=56^{2}+65^{2} \\
c=85.79 \ldots \\
65^{2}=56^{2}+b^{2} \\
b=33 \\
\operatorname{leg}
\end{gathered}
$$

Finding Area of Figures
Find the area of the right triangle with the given leg and hypotenuse length.

NOTE: You need to use
leg =9 mi
Pyth. Tho. to find the
hypotenuse =10 mi height first!

$$
\begin{aligned}
& A=\frac{b h}{2} \\
& 10^{2}=h^{2}+9^{2} \\
& 100=h^{2}+81 \\
& h=\sqrt{19}
\end{aligned} \quad A=
$$

$$
\sqrt{19} \mathrm{mi}
$$

$$
A=19.6 \mathrm{mi}^{\circ}
$$

Find the area of the figure. Round to the nearest tenth.

$$
\begin{aligned}
& \begin{array}{r}
62 \\
-26 \\
\hline 36 \div 2=18
\end{array} \\
& 30^{2}=h^{2}+18^{2} \\
& 900=h^{2}+324 \\
& \text { (8, 20 } \\
& A\left(x^{2}\right)=b \cdot h \\
& \sqrt{h}=\sqrt{576} \\
& h=24 \\
& A=l \cdot \omega \\
& A=26 \cdot 24 \\
& A=624 \\
& A=1056 \mathrm{~m}^{2}
\end{aligned}
$$

Homework Assignment

Worksheet 7.1B

