Pop Quiz.
 Get out a scrap sheet of paper.

1. What does the midsegment theorem say we know about it's relationship with the third side?
2. What does it mean for lines to be concurrent?
3. What is a circumcenter?

Bellwork 11/09/2011

In problems 1 and 2, find $A B$.

2.

Geometry
 5.3 Use Angle Bisectors of Triangles Standard(s): 2,3

Vocabulary:

1. Incenter: The point of concurrency of the three angle bisectors of a triangle.

```
THEOREMS
Theorem 5.5 Angle Bisector Theorem
If a point is on the bisector of an angle, then it is equidistant from the two sides of the angle.
If \(\overrightarrow{A D}\) bisects \(\angle B A C\) and \(\overline{D B} \perp \overrightarrow{A B}\) and \(\overline{D C} \perp \overrightarrow{A C}\), then \(D B=D C\).
Proof: Ex. 34, p. 315
Theorem 5.6 Converse of the Angle Bisector Theorem
If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the bisector of the angle.
If \(\overrightarrow{D B} \perp \overrightarrow{A B}\) and \(\overline{D C} \perp \overrightarrow{A C}\) and \(D B=D C\), then \(\overrightarrow{A D}\) bisects \(\angle B A C\).
Proof: Ex. 35, p. 315
```

For Your Notebook

THEOREM

For Your Notebook

Theorem 5.7 Concurrency of Angle Bisectors of a Triangle
The angle bisectors of a triangle intersect at a point that is equidistant from the sides of the triangle.
If $\overline{A P}, \overline{B P}$, and $\overline{C P}$ are angle bisectors of $\triangle A B C$, then $P D=P E=P F$.

Proof: Ex. 36, p. 316

Incenter

Has to ...

1. Be a point of intersection of the $3<$ bisectors

Is...

1. Equidistant from the sides (\perp)

Use the Angle Bisector Theorems

Find the measure of $\angle B A D$.

Use the information in the diagram to find the measure.

Find AD.

$$
A D=19
$$

Solve a Reat-Wortd Problem
Can you conclude that $\overrightarrow{\mathrm{BD}}$ bisects $\angle \mathrm{ABC}$? Explain.

Use Algebra to Solve a Problem

Find the value of x.

$$
\begin{gathered}
5 x-2=4 x+5 \\
x=7
\end{gathered}
$$

Use the Concurrency of Angle Bisectors

Point T is the incenter of $\triangle P Q R$. Find $S T$.

In the diagram, G is the incenter of $\triangle \mathrm{RST}$. Find GW .

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
a^{2}+12^{2}=13^{2} \\
a^{2}+144=169 \\
-144-144^{28} \\
\sqrt{a^{2}}=\sqrt{25} \\
a=5 \\
6 u=5 \\
G W=5
\end{gathered}
$$

Homework Assignment

Worksheet 5.3B

