Bellwork 04/17/12

1. Use Figure I~Figure II to find the ratio of the sides. Then find the unknown area.

24:18
4:3 16:9
$$\frac{16}{9} = \frac{60}{x}$$

$$\frac{16x = 540}{x = 33.75}$$

Geometry

11.4 Circumference and Arc Length Standard(s): 4, 6

Vocabulary:

Arc Length: A portion of the circumference of a circle.

Note: the measure of the arc (in degrees) can be used to find

the length (in units).

Circumference: The distance around a circle.

Note: We no longer use 3.14 as Pi. You will use the π button on

your calculator.

THEOREM

For Your Notebook

THEOREM 11.8 Circumference of a Circle

The circumference C of a circle is $C = \pi d$ or $C = 2\pi r$, where d is the diameter of the circle and r is the radius of the circle.

Justification: Ex. 2, p. 769

$$C = \pi d = 2\pi r$$

COROLLARY

For Your Notebook

ARC LENGTH COROLLARY

In a circle, the ratio of the length of a given arc to the circumference is equal to the ratio of the measure of the arc to 360° .

$$\frac{\text{Arc length of } \widehat{AB}}{2\pi r} = \frac{\widehat{mAB}}{360^{\circ}}, \text{ or Arc length of } \widehat{AB} = \frac{\widehat{mAB}}{360^{\circ}} \cdot 2\pi r$$

Find Indicated Measures

Find the indicated measure.

1. Radius of a circle with circumference 36 ft.

$$C = 2\pi r$$

$$36 = 2\pi r$$

$$r = 36$$

$$r = 36$$

$$r = 18$$

$$r = 18$$

$$r = 18$$

Find Arc Lengths

Find the length of arc AB.

$$C = 2r\pi$$

 $C = 2(9)\pi$
 $C = 18\pi$

$$(AB) = \frac{45}{360}$$
, $\frac{18\pi}{360}$, $\frac{18\pi}{360}$, $\frac{1}{8}$, $\frac{$

April 17, 2012 Lesson 11.4 HG

Use Central Angles

In circle D, ∠ADC≅∠BDC. Find the indicated measure.

Length of
$$\overrightarrow{ACB}$$

$$\overrightarrow{ACB} = \frac{326}{366} \cdot 8\pi$$

$$\cancel{A} = \frac{326}{366} \cdot 8\pi$$

$$\cancel{A} = \frac{40^{\circ}}{4 \text{ in.}} \cdot \cancel{A} = \frac{40^{\circ}}{4 \text{$$

Length of
$$\overrightarrow{CB}$$

$$\overrightarrow{CB} = \frac{160}{360} \cdot 811$$

ength of
$$\widehat{CB}$$

$$C = \lambda(4) \pi$$

$$C = 8\pi$$

$$=\frac{32\pi}{9}$$

$$\times 11.2in$$

Length of BAC
$$\begin{array}{c}
360 \\
401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

401 \\

40$$

Use Arc Lengths

Find the indicated measure.

Radius of circle G

$$10.5 \text{ ft}$$

$$10.5 \text{ ft}$$

$$10.5 \text{ ft}$$

$$10.5 = \frac{150}{360} \cdot 2\pi \text{ ft}$$

$$10.5 = \frac{300\pi}{360} \cdot \text{ ft}$$

$$10.5 = \frac{300\pi}{360} \cdot \text{ ft}$$

$$10.5 = \frac{63}{5\pi} \times 401 \text{ ft}$$

$$10.5 \text{ ft}$$

Find Perimeter

Find the perimeter of the region.

$$C = d\pi$$
 $C = q\pi$
 C

Homework Assignment Worksheet 11.4C

Lesson 11.4 HG	April 17, 2012