Bellwork 04/17/12

1. Use Figure I~Figure II to find the ratio of the sides.

Then find the unknown area.

$$
\begin{aligned}
& 24: 18 \\
& 4: 3 \quad 16: 9 \\
& \frac{16}{9}=\frac{60}{x} \\
& 16 x=540 \\
& x=33.75 \mathrm{ft}^{2}
\end{aligned}
$$

Geometry

11.4 Circumference and Arc Length

 Standard(s): 4, 6
Vocabulary:

Arc Length: A portion of the circumference of a circle.
Note: the measure of the arc (in degrees) can be used to find the length (in units).

Circumference: The distance around a circle.
Note: We no longer use 3.14 as Pi. You will use the π button on your calculator.

THEOREM

For Your Notebook

Theorem 11.8 Circumference of a Circle

The circumference C of a circle is $C=\pi d$ or $C=2 \pi r$, where d is the diameter of the circle and r is the radius of the circle.

Justification: Ex. 2, p. 769

$$
C=\pi d=2 \pi r
$$

COROLLARY

For Your Notebook

Arc Length Corollary

In a circle, the ratio of the length of a given arc to the circumference is equal to the ratio of the measure of the arc to 360°.

$\frac{\text { Arc length of } \overparen{A B}}{2 \pi r}=\frac{m \overparen{A B}}{360^{\circ}}$, or Arc length of $\overparen{A B}=\frac{m \overparen{A B}}{360^{\circ}} \cdot 2 \pi r$

Find Indicated Measures

Find the indicated measure.

1. Radius of a circle with circumference 36 ft .

$$
\begin{aligned}
& C=2 \pi r \\
& \frac{36}{2 \pi}=\frac{2 \pi r}{2 \pi} \\
& r=\frac{36}{2 \pi} \\
& r=\frac{18}{\pi} \approx 5.7 \mathrm{ft} .
\end{aligned}
$$

Find Arc Lengths
Find the length of arc $\widehat{\mathrm{AB}}$.

Use Arc Lengths
Find the indicated measure.

Radius of circle G

Find Perimeter
Find the perimeter of the region.

$$
\begin{gathered}
15+15+9 \pi \\
30+9 \pi \\
P=58.3 \mathrm{un} .
\end{gathered}
$$

Homework Assignment

Worksheet 11.4C

