Bellwork 08/19/2011

1. Find CE.

2. Find KL.

Geometry
 1.3 Use Midpoint and Distance Formulas Standard(s): 3

Vocabulary:

1. Midpoint: the point that divides a segmenting two congruent segments.

2. Segment Bisector: a point, ray, line segment, or plane that intersects the segment at its midpoint.
$\left(x_{1}, y_{1}\right),\left(x_{2}, v_{2}\right)$
3. Midpoint Formula: $\left.\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
4. The Distance Formula: $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Find Segment Lengths

Point W bisects $\overline{U V}$. Find $U V$ if $W V=11 \frac{1}{8}$ in.

$U V=22^{\frac{1}{4}} \mathrm{in}$.
$\overline{C D}$ bisects $\overline{A B}$ at point C. Find $A C$ if $A B=56$ feet.
$A C=28 \mathrm{ft}$

Use Algebra with Segment Lengths
Point S is the midpoint of $\overline{\text { RT. Find ST. }}$

Find PQ.

$$
x=5
$$

$$
S T=23
$$

Use the Midpoint Formula

Find the coordinates of the midpoint of the segment with the given endpoints. $\left.\overline{\text { GB: }} \begin{array}{c}x_{1} y_{1}\end{array} \begin{array}{r}x_{2} y_{2} \\ (7,-2)\end{array}\right)$ and $\mathbf{H}(-5,-6)$

$\overline{\mathrm{VW}}: \mathbf{V}(\mathbf{2}, 4)$ and $\mathbf{W}(\mathbf{7}, \mathbf{6})$

Find the length of the segment. Then find the coordinate of the midpoint of the segment.

Use the Distance Formula
The endpoints of the segment are given. Find the segment $\xrightarrow{\text { length. }}$

$$
\begin{aligned}
& \begin{array}{c}
\overline{\overline{P Q}}: P(2,5) \text { and } Q(-4,8) \cdot \\
\sqrt{(-4+-2)^{2}+(8-5)^{2}}
\end{array} \\
& \begin{array}{l}
(-6)^{2}+(3)^{2} \\
\sqrt{36+9}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{x_{1} y_{1}} \begin{array}{c}
x_{2} y_{2} \\
\overline{A B}: A(-3,2) B(4,-3)
\end{array} \\
& \sqrt{(4+(+3))^{2}+(-3+2)^{2}} \\
& (7)^{2}+(-5)^{2} \\
& \sqrt{49+25} \\
& \sqrt{74} \approx 8.6 \\
& A B \approx 8.6
\end{aligned}
$$

Homework Assignment

Worksheet 1.3B

