Name \qquad Date \qquad
Lesson 9.5

Practice C

For use with pages 607-615
Perform the stated transformations on the preimage, $\triangle A B C$. Give the coordinates of the image, $\Delta A^{\prime} B^{\prime} C^{\prime}$

1. Reflection: in $x=-2$
2. Translation: $(x, y) \rightarrow(x+6, y+4)$
3. Rotation: 90° about the origin

4. Translation: $(x, y) \rightarrow(x-5, y-4)$
5. Reflection: in the line $y=-x$

The vertices of $\triangle A B C$ are $A(3,-1), B(7,1)$, and $C(5,-4)$. Graph the image of $\triangle A B C$ after a composition of the transformations in the order they are listed.
6. Translation: $(x, y) \rightarrow(x-4, y+1)$ Reflection: in the line $x=1$

7. Translation: $(x, y) \rightarrow(x-2, y+3)$ Rotation: 90° about $(0,2)$

Graph $\overline{F^{\prime \prime} G^{\prime \prime}}$ after a composition of the transformations in the order they are listed. Then perform the transformations in reverse order. Does the order affect the final image $F^{\prime \prime} G^{\prime \prime}$?
8. $F(-2,-1), G(-5,-3)$
Rotation: 90° about ($-2,2$)
Reflection: in the line $y=-1$

Describe the composition of transformations.

					1				x
				1					

9. $F(3,-2), G(6,1)$
Reflection: in the line $y=-x$
Translation: $(x, y) \rightarrow(x+4, y-1)$

10.

11.

In the diagram, e $\| h, \overline{N P}$ is reflected in line e, and $\overline{N P}$ is reflected in line h.
12. A translation maps $\overline{N P}$ onto which segment?
13. Which lines are perpendicular to $\overline{P P^{"}}$?
14. Name two segments parallel to $\overline{N N "}$.
15. If the distance between e and h is 1.2 centimeters, what is
 the length of $\overline{N N^{\prime \prime}}$?
16. Is the distance from N^{\prime} to h the same as the distance from $N^{\prime \prime}$ to h ? Explain.

Find the angle of rotation that maps A onto $A^{\prime \prime}$.

17.

18.

