Name \qquad Date \qquad

LESSON 9.1

Practice C

For use with pages 572-579
Use the translation $(x, y) \rightarrow(x-5, y+8)$.

1. What is the image of $B(4,2)$?
2. What is the image of $D(-1,5)$?
3. What is the preimage of $F^{\prime}(-3,-4)$?
4. What is the preimage of $H^{\prime}(7,-5)$?
5. What is the image of $J(0,2)$?
6. What is the preimage of $K^{\prime}(-4,6)$?

Write a rule for the translation.

7. 1 unit to the left and 1 unit up
8. 3 units down
9. 7 units to the left and 4 units down
10. 10 units right and 8 units up
$\Delta A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a translation. Write a rule for the translation. Then verify that the translation is an isometry.
11.

12.

Name the vector and write its component form.
13.

14.

$\Delta A B C$ with vertices $A(-2,4), B(6.2)$, and $C(3,-2)$ is translated to $\Delta A^{\prime} B^{\prime} C^{\prime}$. Determine the translation using a vector in component form, and determine the coordinates of the remaining vertices.
15. $A^{\prime}(-5,5)$
16. $B^{\prime}(2,-5)$
17. $C^{\prime}(-4,-5)$
18. $B^{\prime}(8,6)$

In Exercises 20 and 21, let P^{\prime} and Q^{\prime} be the images of P and Q, respectively, after an isometry. Determine whether the statement is true or false. If it is true, give a proof using coordinate geometry. If it is false, give a counterexample.
19. If the isometry is the translation $(x, y) \rightarrow(x+h, y+k)$, where h and k are constants, then $\overline{P P^{\prime}}$ and $\overline{Q Q^{\prime}}$ are congruent and parallel (or collinear).
20. If $\overline{P P^{\prime}}$ and $\overline{Q Q^{\prime}}$ are congruent and parallel, then the isometry is a translation.

