\qquad
Lssson 11.7

Study Guide
For use with pages 770-777

GOAL Use lengths and areas to find geometric probabilities.

Vocabulary

The probability of an event is a measure of the likelihood that the event will occur.

A geometric probability is a ratio that involves a geometric measure, such as length or area.

EXAMPLE 1 Use lengths to find a geometric probability

Find the probability that a point chosen randomly on $\overline{A D}$ is on the given line segment. Express your answer as a fraction, a decimal, and a percent.

a. $\overline{A C}$
b. $\overline{B C}$

Solution

a. $P($ Point is on $\overline{A C})=\frac{\text { Length of } \overline{A C}}{\text { Length of } \overline{A D}}$

$$
=\frac{|5-(-15)|}{|10-(-15)|}=\frac{20}{25}
$$

The probability that the point is on $\overline{A C}$ is $\frac{4}{5}, 0.8$, or 80%.
b. $P($ Point is on $\overline{B C})=\frac{\text { Length of } \overline{B C}}{\text { Length of } \overline{A D}}$

$$
=\frac{|5-(-5)|}{|10-(-15)|}=\frac{10}{25}
$$

The probability that a randomly chosen point is on $\overline{B C}$ is $\frac{2}{5}, 0.4$, or 40%.

Exercises for Example 1

Find the probability that a point chosen at random on $\overline{A D}$ is on the given line segment. Express your answer as a fraction, a decimal, and a percent.

1. $\overline{A B}$
2. $\overline{B C}$
3. $\overline{A C}$
4. $\overline{B D}$

Name \qquad Date \qquad

LESSON
117
Study Guide
continued For use with pages 770-777

EXAMPLE 2 Use areas to find a geometric probability

Find the probability that a point chosen at random in the figure lies in the shaded region. Express your answer as a percent.

Solution

STEP 1 Find the area of the whole rectangle, using the
 formula $A=b h$.
$A=b h=6(8)=48$ square units
STEP 2 Find the area of the shaded region.
The radius of the circle is one half the length of the base of the rectangle. So, $r=3$.

The area of the semicircle is one half the area of the circle. So, $A=\frac{1}{2} \pi r^{2}=\frac{1}{2} \pi \cdot(3)^{2} \approx 14.14$ square units.

$$
\text { Area of shaded region }=\text { Area of rectangle }- \text { Area of semicircle }
$$

$$
\begin{aligned}
& \approx 48-14.14 \\
& =33.86 \text { square units }
\end{aligned}
$$

STEP 3 Find the ratio of the area of the shaded region to the total area of the figure.

$$
\begin{aligned}
P(\text { Point lies in shaded region }) & =\frac{\text { Area of shaded region }}{\text { Area of total figure }} \\
& =\frac{33.86}{48} \\
& \approx 70.5 \%
\end{aligned}
$$

The probability that a randomly chosen point lies in the shaded region is about 70.5%.

Exercises for Example 2

Find the probability that a point chosen at random in the figure lies in the shaded region. Express the answer as a percent.
5.

6.

7.

