ESSON 11.7

GOAL Use lengths and areas to find geometric probabilities.

Vocabulary

The **probability** of an event is a measure of the likelihood that the event will occur.

Date .

A **geometric probability** is a ratio that involves a geometric measure, such as length or area.

EXAMPLE1 Use lengths to find a geometric probability

Find the probability that a point chosen randomly on \overline{AD} is on the given line segment. Express your answer as a fraction, a decimal, and a percent.

Solution

a.
$$P(\text{Point is on } \overline{AC}) = \frac{\text{Length of } AC}{\text{Length of } \overline{AD}}$$
$$= \frac{|5 - (-15)|}{|10 - (-15)|} =$$

The probability that the point is on \overline{AC} is $\frac{4}{5}$, 0.8, or 80%.

b.
$$P(\text{Point is on } \overline{BC}) = \frac{\text{Length of } \overline{BC}}{\text{Length of } \overline{AD}}$$
$$= \frac{|5 - (-5)|}{|10 - (-15)|} = \frac{10}{25}$$

The probability that a randomly chosen point is on \overline{BC} is $\frac{2}{5}$, 0.4, or 40%.

 $\frac{20}{25}$

Exercises for Example 1

Find the probability that a point chosen at random on \overline{AD} is on the given line segment. Express your answer as a fraction, a decimal, and a percent.

LESSON
11.7Study Guide
For use with pages 770-777

Date .

EXAMPLE2 Use areas to find a geometric probability

Find the probability that a point chosen at random in the figure lies in the shaded region. Express your answer as a percent.

Solution

STEP 1 Find the area of the whole rectangle, using the formula A = bh.

A = bh = 6(8) = 48 square units

STEP 2 Find the area of the shaded region.

The radius of the circle is one half the length of the base of the rectangle. So, r = 3.

The area of the semicircle is one half the area of the circle. So,

 $A = \frac{1}{2}\pi r^2 = \frac{1}{2}\pi \cdot (3)^2 \approx 14.14$ square units.

Area of shaded region = Area of rectangle - Area of semicircle

$$\approx 48 - 14.14$$
$$= 33.86 \text{ square units}$$

STEP 3 Find the ratio of the area of the shaded region to the total area of the figure.

$$P(\text{Point lies in shaded region}) = \frac{\text{Area of shaded region}}{\text{Area of total figure}}$$
$$= \frac{33.86}{48}$$
$$\approx 70.5\%$$

The probability that a randomly chosen point lies in the shaded region is about 70.5%.

Exercises for Example 2

Find the probability that a point chosen at random in the figure lies in the shaded region. Express the answer as a percent.

LESSON 11.7